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__________________________________________________________________ 
Abstract 

    This paper answers several questions of centralized Kalman-Filters in multi-sensor fusion, fault detection and 

isolation in sensors, optimal control in linear-quadratic Gaussian problem, an algorithm in fuzzy based approach 

to adaptive Kalman-Filtering additionally in multi-state multi-sensor fusion. Generally, Kalman-Filters comprise a 

number of types and topologies depending on use and computing complexity of applied processors. State 

estimation provided by a Kalman-Filter is crucial in this thesis. Kalman-Filter performs optimal estimation of an 

unknown system state through filters behavior. This thesis supposes some models   of promising linear Kalman-

Filter simulated beyond MATLAB and Simulink program especially utilized in the fields of steering-controls or 

navigations, etc. 
 

Index Terms — Kalman-Filter, multi-sensorfusion, Fuzzy-Logic, Gaussian, Optimal estimate 

______________________________________________________________________________________ 

1. Introduction 

      In this paper, we dedicate the effort to introduce 

Kalman filter - KF techniques with 2 models of 

conventional Kalman filter, CoKF, mainly. Although 

there is no difference between centralized Kalman   

filter CKF and CoKF, we like to show  the CoKF   as   

an   estimator structure  in single-sensor systems First 

of all, we will assume a mathematical model of a 

plant defined by equations of discrete system 

dynamics. To get the equations of the optimum 

estimator, i.e., the KF, suppose that the plant of 

system dynamics  are  designed  by the  (possibly 

time-varying)  general  model  of  linear  finite-

dimensional stochastic system, see below; [1], [2].   

 

 x(n + 1) = Ax(n) + Bw(n)                        (1-1) 

  

   yv (n) = Cx(n) + v(n),   n ≥ n0          ( 1-2 

 

2. Model 1 of Kalman filter 

 

 In this part, investigates a timing diagram of KF  

In order to get a control program flow with applied 

equations in Table 2-1 below. This will be also 

introduced briefly in next model. The model refers to 

 [1 - 2].  The table deals with two programs, i.e. 

initial program and main iterative program. The Initial 

time n0 is the formal time when processor does not 

process 

 Table  2-1 

first sample but starts an initial program 

Intional Program Initial Time n=0 

P(n|n-1) = B Qd B
T  

,  where Qd is defaulted Q(0) > 0 

                                                                                    (2-1) 

x(n|n-1) = 0                                                                (2-2) 

ye(n) = 0                                                                    (2-3) 

     Iteration Time n = 1,2,3,… 

M(n) = P(n|n-1) C
T  

/ (C P(n|n-1) C
T  

+ R(n))        (2-4) 

r(n) = yv(n) – C x(n|n-1)                                           (2-5) 

x(n|n) = x(n|n-1) + M(n) r(n )                                     (2-6) 

P(n|n) = [I - M(n) C] P(n|n-1)                                   (2-7) 

ye(n) = C x(n|n)                                                        (2-8) 

error cov = C P(n|n) C
T                                           (2-9) 

x(n+1|n) = A x(n|n)  + B u(n )                                 ( 2-10) 

P(n+1|n) = A P(n|n) A
T  

+ B Q(n) B
T                    (2-11) 
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The timing diagram of Table 2.1 can be described as 

follows  

The innovation KF gain is computed in (2-10) with 

the usage of delayed matrix of error covariance time 

update, and the recent observation noise variance R(n) 

at the beginning of discrete time n. This refers to 

computation of state error covariance matrix, which 

indicates an accuracy of the state estimate. This 

calculation provides optimal innovation KF gain to 

minimize a KF cost function below 
    

  P (n) = Ε⎜
⎛[x(n) - x(n | n)][x(n) - x(n | n)]

T 
⎟
⎞           (2-12) 

 
3. Model 2 of Kalman filter 

       A timing diagram shown in Table 3.1 is modified 

model from Table 2-1 Both modelsare   mathematically  

identical.  A  difference  between  these  two  models 

and   their mathematical identity is measured because 

other expressions of error covariance update and 

innovation gain are used here. This way, we will 

slightly tend to DKF techniques in multi sensor fusion. 

 

 

 
Initial Time  n = 0 

P(n|n-1) = B Qd B
T  

 where Qd is defaulted Q(0) > 0 

                                                                            (3-1) 

x(n|n-1) = 0                                                   (3-2) 

 

ye(n)=0                                                              (3-3) 

Iteration Time n = 1,2,3,… 

  

Observation update : 

Error Covariance update: P(n|n)
-1  

= P(n|n-1)
-1  

+ C
T 

C / R(n ) ,                                            

                                                                           (3-4)0 

Innovations Sequence (Residuals): 

r(n) = yv(n) – C x(n|n-1)                              (3-5) 

State Estimate Update: 

x(n|n) = x(n|n-1) + M(n) r(n)                       (3-6)  

Estimated Filter Output: 

ye(n) = C x(n|n)                                           (3-7)  

Error Covariance:  

error cov = C P(n|n) C
T                               (3-8)  

Time update : 

State Time Update: 

x(n+1|n)  = A x(n|n)  + B u(n)                     (3-9)  

 

Error Covariance Time Update:  

P(n+1|n) = A P(n|n) A
T  

+ B Q(n) B
T       (3-10) 

 

 

                                        Table 3-1 

The state error covariance matrix becomes singular 

always at the beginning of simulation 

 

                                                   

 

 

 

                                             

                        

 

 

        

 

 

 

Fig 3-1 

           Elements oii refers to N(0,10power -14)  and             

identity matrix O of noise N (0,10power-4) those 

elements oii are taken to absolute value  O = [Oii ] = oii , 

where i = 1,2,  3,..., lo, and lo  is the order of state 

vector. The matrix is additionally summarized with 

state error covariance matrix when the singularity 

happens 
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4. Centralized Kalman filter Techniques 

      

This deals with CKF technique and models. The models 

are built according to In centralized Kalman filtering,  

Signals of sensors are transferred through the 

communication network to the central processor to 

generate the optimal central estimate x(n|n). The all 

information is sent to the fusion centre, Figure     4-2, to 

yield x(n|n) and minimize state estimation error. 

 

 

              

                
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

 

 

 

 

 

 

 
Fig 4-1 Centralized Kalman filter topology 

 

 

 

 

 

 
 

 

 

 

 

5. Model 1 of centralized Kalman filter 

 
Initial Program 

Initial Time  n = 0 

Initial error covariance:    P(n | n - 1) = B Qd B 
T 

,        

    Qd is defaulted Q(0) > 0                                         (5-1) 

Initial condition on the state: x(n | n - 1) = 0             (5-2) 

Initial condition on Filter Output: 
y 

ei 
(n) = 0             (5-3) 

Iteration Time n = 1,2,3,… 

Observation update : 

Innovation KF Gain: 

⎦M  (n) = P(n | n - 1) C 
Ti ⎣

C
i 

P(n | n -   1) C
i
+ R 

i 
(n) ⎥⎦ 

                                                                                        (5-4) 

Table 5-1 

 

State Estimate Update 

x(n | n) = x(n | n - 1) +1/N∑ Mi = 1  I (n) r (n) , N ≥ 1 (5-

5) 

                                                                                               

N0 means number of sensors 

 

Error Covariance Update: 

 

P(n | n) = ⎢I -   
1

 NoN 
o∑ Mi = 1 

i
(n) C   ⎥i ⎥⎦P(n | n - 1)  

                                                                                    (5-6) 

                                                  

Estimated Filter Output:
    

 y 
ei 

(n) = C
ix(n | n)                                                       (5-7) 

 

Error Covariance:  
error cov= C

iP(n | n) Ci power T                               (5-8) 
 
Time update : 

State Time Update:  

x(n + 1 | n) = A x(n | n) + B u(n)                                   (5-9) 

 

Error Covariance Time Update: 

 P(n + 1 | n) = A P(n | n) A 
T 

+ B Q(n) B 
T                (5-10) 

Table 5-2   Timing diagram of Model 1 of   CKF. 

 



 

                                                                                                                                                   

4 

 

Update in digital computing. To get over this 

problem we present following method capable to 

avoid the singularity Time updated covariance 

simulation. This inconvenience causes wrong state 

estimate matrix becomes singular always at 

beginning of simulation and in a term of middle 

time during whole simulation shown by a flowchart in 

Figure 5.1 

 

 

 
 

Fig 5-1 Treatment of the DKF error covariance time 

update  calculation 

 
 
6.   Results 

 

 
 

Fig 6-1Simulink Block of Model 1 of KF 

 

 
 

Fig 6-2 Model 2 of KF in Simulink MATLAB Program 

 

 

Fig 6-3Model 3 of CKF in Simulink MATLAB Program 
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   8. Conclusion 

 

        This manuscript is composed of two main parts as 

well as Kalman Filter techniques, MATALAB 

simulation and Tests. The first part employs Kalman-

Filter technique with one sensor, The second part 

centralized Kalman- Filter technique.. Centralized 

Kalman-Filter with many sensors so-called CKF. Then 

the followings are associated with experiments in 

problematic of bias, broken node, drift effect on state 

estimation in DKF, algorithm of fault detection  and 

isolation in sensors, algorithm and exercising on 

adaptive fuzzy logic centralized Kalman-Filter, LQR 

and LQG. 

 

 

 

 

 

 

 

 

 

 

 

   


